EPMS-HD Power Management in High Definition

System Presentation

Precision Timing for Reliable Power. Simplified. SM

Know what happened and when—to 1 msec!

Understand—Forensics tool

- Perform root-cause analysis based on reliable data.
- View current and voltage waveforms captured with each event.
- Determine if the initial source was internal or external.

Respond—Act quickly

- Evaluate control sequences, timing, and operator actions.
- Confirm protective device time-current coordination.
- Restore service quickly if an outage does occur.

Prevent—Take corrective actions

- Resolve or mitigate persistent problems.
- Provide documentation for the electric utility, legal, insurance, etc.
- Identify slow breakers before they can cause an arc flash hazard.

EPMS-HD is needed where reliable power is important:

Data centers

Hospitals

Industrial facilities

Universities

Airports

Microgrids & alternative energy

High Definition Power Management

• Energy metering: just the start!

• Monitor everything: more data = better decisions

• Time sync: the foundation for meaningful analysis

Modern power systems = 1000s of points to be monitored

Thousands of potential blind spots!

High Definition Power Management: Monitor Everything

For data to be meaningful, devices must share a common (precise) time reference.

- Meter data
- Alarms
- Events
- Waveforms
- Data logs

Precision Time Protocol (PTP) per IEEE 1588

	∲IEEE		
	IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems		
288	IEEE Instrumentation and Measurement Society Sponsored by the Technical Committee on Sensor Technology (TC-9)		
-	ESE Sed Annus PAd Annus New You, Yr 10016-6007, USA (Penalton of PA Jay 2009		

• IEEE Std 1588-2008 (v2)

- Special Ethernet hardware does time-stamping
- Mechanism to correct for network latency
- Multicast messaging
- High accuracy over Ethernet possible

• Many optional features

- Several clock types (grandmaster, slave-only, transparent, etc.)
- Domain number, 0 to 127 (default = 0)
- Delay mechanisms: End-to-end (E2E) or Peer-to-peer (P2P)
- UDP vs. Layer 2, 2-step vs. 1-step, etc.
- Flexible—but interoperability requires a "profile"

Power Profile (per C37.238) defines PTP characteristics in "Power System Applications"

IEEE STANDARDS ASSOCIATION	♦IEE
IEEE Standard Pro IEEE 1588™ Precis in Power System A	file for Use of ion Time Protocol pplications
IEEE Power & Energy Society	¢.
Sponsored by the Power System Relaying Committee and Substations Committee	
EEE Park Avanue éew York, NY 10016-5997 ISA	IEEE Std C37.238*-2011
4 July 2011	

- Power Profile: Standard set of PTP characteristics defined by IEEE Std C37.238-2011
- Primarily for utility substation automation
- Profile characteristics:
 - Target accuracy: 1 µs (up to 16 switches)
 - 802.3 Ethernet (Layer 2) mapping
 - Multicast only
 - Peer to peer (P2P) delay measurement
 - Switches must be transparent clocks (PTP-aware)

"Simple PTP" (SPTP) is based on the PTP default profile (<100 µs: Goldilocks solution—just right.)

PTP (IEEE 1588)	"Simple PTP" Profile	Power Profile (C37.238)			
Accuracy: nanoseconds	Accuracy: < 100 μs	Accuracy: < 1 μs			
All clock types	Master and Slave-only	Most clock types			
Multicast or Unicast	Multicast	Multicast			
802.3 or UDP/IPv4, v6	UDP/IPv4	802.3 only (layer 2)			
PTP-aware switches	No special switches req'd.	PTP switches required			
P2P or E2E delay mech.	E2E only	P2P only			
1-step or 2-step	2-step	1-step or 2-step			
Variable delay requests	32s	1s			
Timescale: TAI, UTC or arbitrary	Timescale: UTC (or TAI)	Timescale: TAI only			
TLV, MIB, VLAN tags	None	TLV, MIB, VLAN tags req'd.			
General	Simple	Strict			

CSI "Simple PTP" Profile is based on IEEE 1588 default profile (E2E).

Time sync—easy as 1-2-3

Choose time source

Time sync via PTP

Sync non-PTP devices

PTP (IEEE 1588): Precision time sync over Ethernet

PTP-enabling other EPMS devices (via legacy protocols)

EPMS time-sync system examples

Example: sync first SER from **NTP** server (GPS optional)

—first SER is located in MV switchgear

Example: sync first SER from GPS clock (via IRIG-B)

—IRIG-B to first SER and to relays and meters that support it

Example: SER #1 as PTP Master, SER #2 as standby

—IRIG-B to both SERs (and others if desired)

Example: sync first SER from GPS clock (IRIG-B)

—first SER in same panel as clock, relays sync via IRIG-B

PTP-enabled SER: Simple. Affordable. Scalable.

Events Happen... (in milliseconds)

CyTime ™ Sequence of Events Recorder

Power monitoring at the speed of NOW !

Precision Time Protocol (PTP), per IEEE 1588, enables 1-ms time-sync over Ethernet. Diagnose root cause, verify control schemes operate as designed, identify slow breakers before they increase arc flash hazard.

www.cyber-sciences.com

Download our 20-page white paper on PTP and you'll ♥ 1588 too:

.